“Ultimately, we want to be able to manage our agricultural inputs using a strategy that is adapted to variable climate conditions, and we believe that the precision technologies provide more robust tools to achieve that,” he said.

The team and project goals

Texas A&M AgriLife is the lead institution of this proposal and the state produces the most cotton. AgriLife Research’s expertise hinges on decades of comprehensive research on cotton production and marketing.

However, team members are located throughout the Cotton Belt – Texas, Arizona, New Mexico, Mississippi, Tennessee, Alabama, Georgia and North Carolina – and are affiliated with 12 universities, two USDA-Agriculture Research Service centers, the nonprofit organization Agricenter International and two for-profit organizations: Farm Journal/Trust in Food, NORI and GaiaDhi AgTech.

Through the project, the team of agronomists, soil scientists, biologists, engineers, social scientists and extension specialists will develop regenerative cotton production practices and investigate their long-term effects on U.S. cotton production systems, Bagavathiannan said.

The goals are to:

  • Establish soil organic carbon and carbon intensity baselines for ecoregions in the southern U.S. cotton-growing regions.
  • Investigate regenerative practices for reducing tillage and improving soil health.
  • Investigate the long-term impact of regenerative practices in addressing climate change using simulation models.
  • Develop and/or evaluate precision AI, machine learning and smart technologies for resource conservation and adaptation in cotton-growing conditions.
  • Evaluate the economic feasibility of precision regenerative production practices and determine new market opportunities.
  • Promote the adoption of proven regenerative production practices through innovative and collaborative extension and outreach activities.
  • Provide educational opportunities to train the next generation of research and extension scientists and practitioners and empower the rural workforce.

The Cotton Belt ecoregions include: an arid region, where Arizona is the hub; a semiarid region, the Texas High Plains and New Mexico; a subhumid region, Southeast Texas; the Mississippi Delta; and the Southeast.

“Cotton rotation is one of the least diverse rotations across the southern U.S., and more importantly, in the Texas High Plains,” Bagavathiannan. “That makes the system very vulnerable in terms of soil health and sustainability challenges. We are addressing that in this grant with an interdisciplinary approach, bringing people together and utilizing the recent technological advancements in precision agriculture tools.”